

KC WATER
Blue River Biosolids Facility Project

Pre-SOQ Meeting

Mandatory Meeting

- All Design-Builders
- All Members of a Joint Venture

Name	Title	Company	
Phone	E-Mail		DB or JV Member
			Yes/ No

PROGRAM MANAGEMENT TEAM

Owner's Advisor Team Currently

D/B Selection

Assistance

3T-Design&DevelopmentLLC Planners-Architects-Engineers-Builders

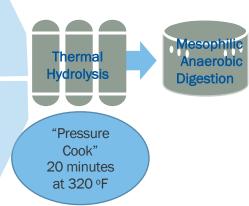
Conceptual Design

Owner's Advisor (Procurement)

Project Organization Chart

STABALIZATION OPTION SELECTED

SUSTAINABLE DECISIONS PROCESSES


Positive Impacts of Thermal Hydrolysis on Digester Biology, Rheology, Capacity and Up/Downstream Processes

Rheological Properties

- Reduced viscosity (easier to pump)
- 10 percent sludge readily flows
- Reduced pumping and mixing requirements

Increase Digester Capacity

- > 2 times the loading of conventional digestion
- Reduced tankage install

Hygienization

- Class A sterilization
- Makes mesophilic digestion more robust

Biosolids Characteristics

- >30 percent TS cake typical
- Stackable cake
- Low odor product

Biogas Production

- Increased yield
- Higher methane content in gas

BENEFITS

Elimination of incineration and emissions

All solids processed through existing digesters

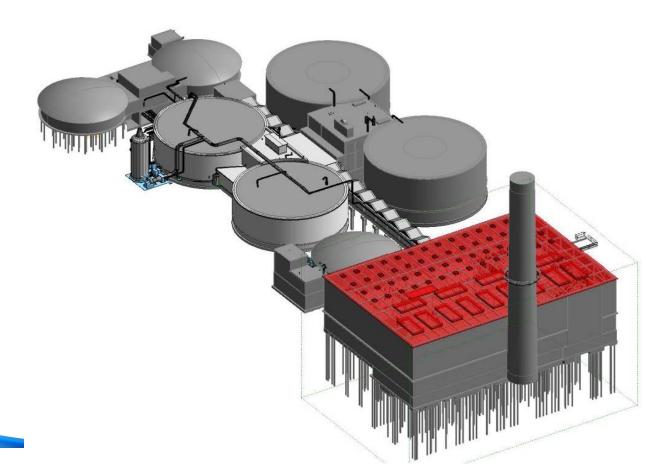
Class A product, beneficial use of biosolids

Energy recovery

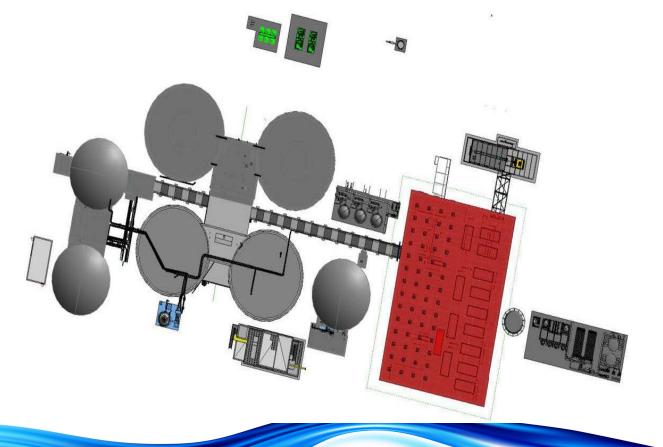
Odor reduction

PROJECT GOALS AND OBJECTIVES

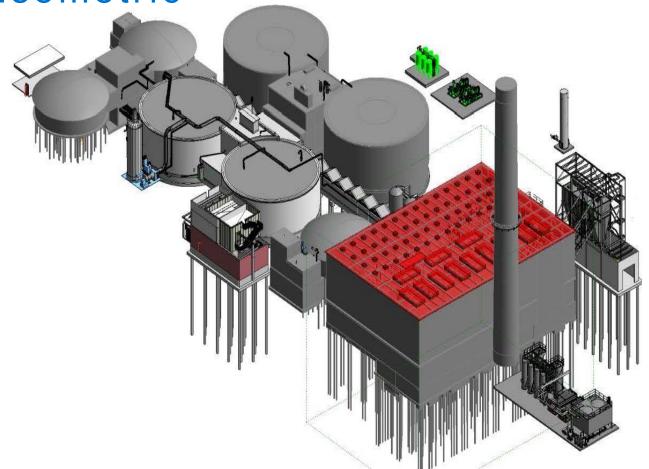
- 1. Safety
- 2. Quality
- 3. Cost
- 4. Collaboration
- 5. Schedule
- 6. Risk
- 7. Operations and Maintenance
- 8. Accountability
- 9. Smooth Transition



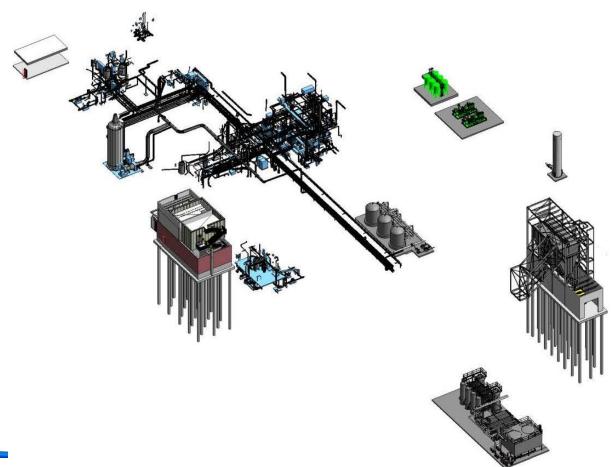
REFERENCE DESIGN OVERVIEW



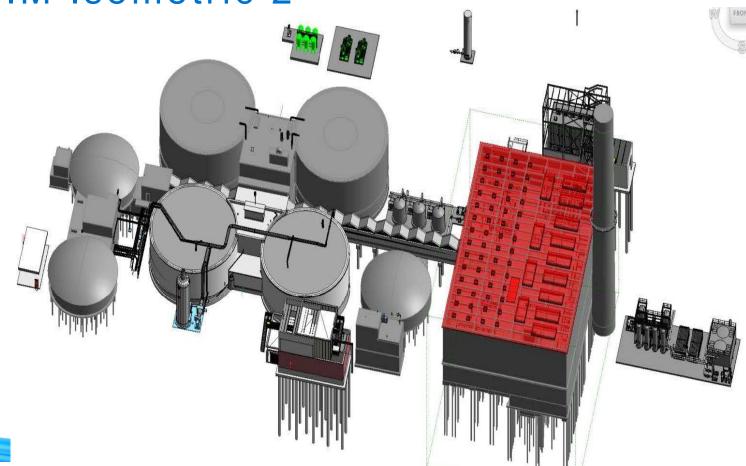
BIM of Existing Plant



Draft Preliminary Design BIM



Draft BIM Isometric



Draft BIM New Assets

Draft BIM Isometric 2

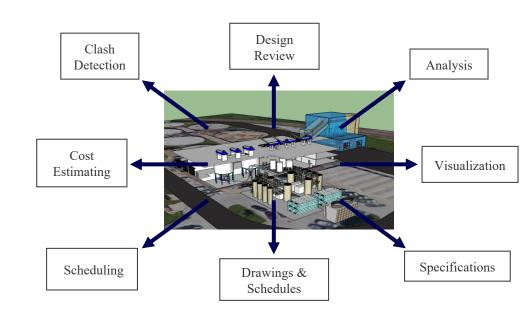
Scope of Work (Rehabilitation)

- Demolition of existing incinerator systems
- Rehabilitation of the Blue River Solids Building
- Rehabilitation of the East & West Holding Tanks
- Upgrading and replacing obsolete electrical systems
- New Electrical Sub Station No. 1
- Boilers for steam generation (Provisional)
- Treatment of digester biogas
- Biogas flare

Scope of Work (New Processes)

- THP for processing approximately 94 dry tons of wastewater sludge
- Sludge screening
- Pre-dewatering centrifuges
- Final dewatering centrifuges
- Sludge heat exchangers
- Side-stream ammonia treatment.
- Blue River WWTP
- New Electrical Sub Station No. 1
- Boilers for steam generation. (Provisional)
- Dewatered and Pre-THP Dewatered sludge storage
- Side-stream ammonia treatment

Biosolids Conveyance


Solids Loadings

Parameter	2025		2035	
Loading Condition	Annual Average	Max Month	Annual Average	Max Month
Primary Sludge, Tons DS/day	46	59	45	59
Secondary Sludge, Tons DS/day	23	29	28	37
Total Sludge, Tons DS/day	68	88	74	96
Pre-dewatered Sludge, % TS (diluted < 18% before AD)	20% - 24%	20% - 24%	20% - 24%	20% - 24%
Total Sludge to THP, Tons DS/day	67	86	72	94
Volatile Solids, % VS/TS	72% - 76%	72% - 76%	72% - 76%	72% - 76%

Defining KC Water's BIM Program

- 3D based design
- Automated interference detection
- Design and constructability reviews
- Design-Builder schedule/budget management, phasing scenarios
- Whole-life asset management
- Defined protocols for future BIM

BIM—Building Information Model

SOQ REQUIREMENTS

Design-Builder Pass Fails

1. Bonding

2. Insurance

3. Licensing and Registration

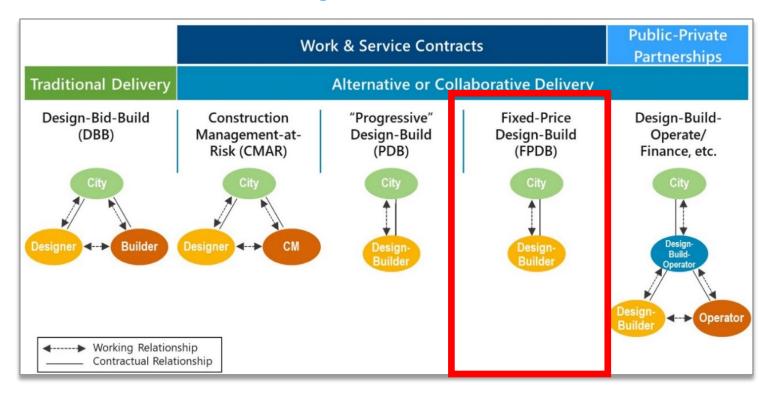
HRD Programs

- 1. Kansas City Minority/Women Owned Business Enterprise
 - 1. MBE 11%
 - 2. WBE 8%
- 2. Prevailing Wage (Jackson County, MO)
- 3. Workforce Participation (Prime Boots on the Ground)

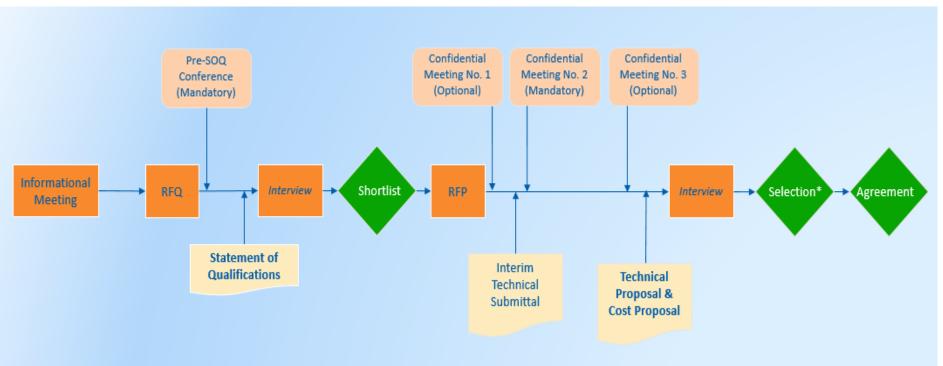
Self-Performance Requirement

External Funding Requirements

SRF and WIFIA


- 1. American Iron and Steel
- 2. Buy American

PROCUREMENT



Best Value Design-Build

Procurement Path

* Sealed Cost Proposals are opened publicly. Final Design-Builder selection based on combined scoring of Technical Proposals and Cost Proposal.

SOQ Sections

- 1. Transmittal Letter
- 2. Design-Builder Profile
- 3. Key Personnel (Utilization, Location, Detailed Project Experience)
- 4. Past Experience (Be Specific)
- 5. Safety Record
- 6. Appendices

50 Page limit

Detailed Schedule

- Advertise RFQ August 23, 2019
- Mandatory Pre-SOQ Conference August 30, 2019
- Deadline for Receipt of Written Questions September 20, 2019
- SOQ Submission Date October 1, 2019
- SOQ Interviews October 23, 2019*
- Shortlist Selection Date October 23, 2019*
- Issuance of RFP December 3, 2019*
- Proposal Submission March 24 2020*
- Notice to Proceed October 2020*
- Substantial Completion September 2023*
- *Provisional

City reserves the right to request additional information after receiving the SOQ.

Parallel Work during Shortlisting

- 1. RFP Scoring Criteria
- 2. THP Vendor Selected
- 3. Biogas Plan
- 4. Source of Steam
- 5. Development of Request for Proposal
- 6. Preliminary Design
- 7. Air Permitting
- 8. Criticality in particular Spare Parts
- 9. City Design-Build Contract Updates

Items not to be considered in the project

- 1. ESCOs based on Biogas Utilization
- 2. Scope Over the \$150 Million Budget
- 3. FOG Receiving Station (possible)

Selected RFP Attachments

- Existing Conditions BIM
- Current Plant 1 Line
- Current Plant Load Study
- Current Site Piping
- Project Risk Register
- Basis of Design Report

ENGAGEMENT

Communications

- In general, all communications (written and spoken) about this project are prohibited and grounds for disqualification of a Design-Builder.
- No Site access during the shortlisting stage

Exceptions

- Written Questions maybe submitted to:
 - Darrell Everette: Procurement Manager- Darrell.Everette@kcmo.org
- KC MBE/WBE firms are exempt. They may communication with myself and others City Staff to facilitate teaming.
- Design-Builders may contact Human Relations Staff to facilitate meeting Goals

Questions

